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Complex chemical reactions are commonly described by systems of nonlinear ordinary differential equations.
Rate and equilibrium constants of these models are usually not directly accessible and have to be indirectly
inferred from experimental observations of the system. As a consequence, parameter identification problems
have to be formulated and computationally solved. Because of a limited amount of information and uncertainties
in the data, the solutions to such parameter identification problems typically lack uniqueness and stability
properties and hence cannot be found in a reliable way by a pure minimization of the data mismatch (i.e., the
discrepancy between experimental observations and simulated model output). To overcome these difficulties,
so-called regularization methods have to be used. In this article, we suggest a sparsity promoting regularization
approach that eliminates unidentifiable model parameters (i.e., parameters of low or no sensitivity to the
given data). That way, the model is reduced to a core reaction mechanism with manageable interpretation
while still remaining in accordance with the experimental observations. For the computational realization, we
utilize the adjoint state technique for an efficient calculation of the gradient of the objective with respect to
model parameters as well as uncertain initial and experimental conditions. Illustrations of our approach are
given by means of the chlorite-iodide reaction for which reference parameter values are available.

Introduction

The field of nonlinear chemical kinetics has been investigated
for about half a century, and yet only a few complex chemical
reactions have been described by means of an experimentally
backed system of ordinary differential equations. The most well-
known is the chlorite-iodide reaction,1 which involves only two
inorganic ions and can be characterized by an established
reaction mechanism (LLKE model2). Chemical reaction schemes
are associated with systems of ordinary differential equations

ċ(t)) f(c(t), q) (1)

for the concentrations c(t) ) [c1(t),..., cm(t)]T ∈ [R0
+]m that

describe the time course of the chemical species. The right-
hand side f describes the coupling of the species ci, which
depends on a vector q ∈ [R0

+]n of n rate and equilibria constants.
Given the vector field f, parameter values for q, and initial
conditions on c, the time course of c can be numerically found
by integration of eq 1, a problem one would refer to as a direct
or forward problem.

A major challenge in chemical kinetics is that, if at all, only
a few rate constants of complex reactions can be directly
determined from measurements using the methods of initial rates
and/or individual exponential fit of pseudo-first-order kinetic
curves.3 Hence, the unknown components of the parameter
vector q have to be indirectly inferred from experimental
observations of the system. Such parameter identification
problems belong to the class of inVerse problems, where in

general terms one looks for the causes (e.g., parameters) for
desired or observed effects (e.g., experimental observations).
Inverse problems typically are inherently unstable (i.e., highly
sensitive to data errors), such that regularization methods have
to be used (see below).

Parameter identification for chemical reaction systems is
based on a comparison between experimental data and numerical
simulations obtained via eq 1. A common approach, also
followed by the software packages ZITA, PARFIT, and
PARKIN,4-6 is to consider the least-squares minimization
problem

|data- simulation(q)|2fmin (2)

over a set of admissible parameters q with some suitable norm
| · |measuring the discrepancy between data and simulation. The
underlying premise is that the optimal parameter set is one that
gives rise to simulations that match experimental observations
as much as possible.

Often, the possibilities for experimental observations of the
system are limited, and only a few of the reactants are accessible
to measurements. For instance, only iodine is exclusively
detectable in the visible spectrum in the context of the
chlorite-iodide reaction. As a consequence, the available
experimental data often do not contain enough information to
uniquely determine the model parameters. Then, solutions
obtained by solving eq 2 may lead to inappropriate chemical
conclusions, even in the case of simple kinetic systems.3 An
obvious approach to increase the information about the param-
eters contained in the data is to repeat the experiments under
varying conditions. Though some relief can be expected, the
problem of nonuniqueness of the solution to eq 2 may still
remain.
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Another difficulty of eq 2 arises from the fact that its solution,
even if it is unique, may not depend continuously on the data.
As a consequence of this inherent instability of parameter
identification, even small errors in the data (e.g., due to
practically inevitable measurement uncertainties) may be sig-
nificantly amplified and parameter solutions, though able to
reproduce the data, may become worthless. The issue of data
noise amplification in parameter identification is widely dis-
cussed in the mathematical literature7,8 but seems to be sparely
addressed in the literature on chemical reactions. Especially,
the pure least-squares approach in eq 2 is highly fault-prone in
case of noisy experimental data. To counteract these instabilites,
so-called regularization techniques have to be applied,7 then
allowing for the computation of stable approximations to the
solution. In context of least-squares formulations, regularization
theory suggests to replace the unstable problem in eq 2 by the
neighboring minimization problem

|data- simulation(q)|2 +R penalty(q)fmin (3)

with strictly positive regularization parameter R, often referred
to as variational regularization.9 For appropriate choices of the
penalty term, eq 3 can be shown to be stable such that its
minimizer(s) q(R), as opposed to minimizers of eq 2, then
depend continuously on the data. Clearly, the method parameter
R acts as a balance between accuracy and stability of q(R). For
very large R, the influence of the data in eq 3 is nearly negligible.
Hence, the solution q(R) is rather insensitive to data perturba-
tions but will lead to large deviations of the simulations from
the data. A decrease of R will reduce the misfit between data
and simulation but, since getting closer to eq 2, will also make
q(R) more sensitive to data errors. Theory-based rules for
optimal choices of R depend (besides of the actual penalty term)
on available a priori information about the data errors and the
data itself.7

In this article, we suggest to regularize the parameter
identification problem in the presence of uncertain and limited
data by using a penalty term in eq 3 that enforces sparse
solutions (i.e., parameter vectors with only a few nonzero
components). Regularization by sparsity is currently an active
field of research with continuously growing results on both
theoretical and algorithmic aspects.10-14 In the context of
parameter identification for chemical reaction networks, one
advantage of the approach is that unidentifiable parameters are
eliminated while the remaining ones can be recovered from
the available data in a stable way, then still allowing to
reproduce to data by means of a reduced reaction network. With
the chlorite-iodide reaction, we have chosen one of the best
described chemical reaction networks for the illustration of
sparsity enforcing regularization and a validation by comparing
our results with those accepted in the literature.

The article is organized as follows. First, we introduce the
LLKE model2 for the chlorite-iodide reaction utilizing the ODE
formalism eq 1. Next, we describe the experimental data as well
as the techniques and the varying closed system conditions under
which they were obtained. The mathematical formulation of the

parameter identification problem is the subject of the following
section. Therein, we also specify the sparsity enforcing penalty
terms that we used. Finally, results of our approach are presented
and the interpretation of the sparsity pattern found is given. The
numerical solution of the minimization problems in eq 3 by a
combination of global and local search techniques is outlined
in the Appendix. Especially, we give an explanation of the
adjoint state technique for efficient gradient calculations of the
objective functional.

LLKE Model of the Chlorite-Iodide Reaction

To illustrate the sparsity promoting regularization approach
to parameter identification in chemical reaction systems, we
chose the chlorite-iodide reaction network for which a detailed
ODE model is available and commonly accepted (LLKE
model2). Under certain conditions, the chlorite-iodide reaction
can show unusual dynamic behavior. When the two inorganic
ions chlorite ClO2

- and iodide I- are initially mixed, the color
of the solution gets more and more yellow but then the solution
suddenly becomes colorless again. This corresponds to a
monotonic increase of the iodine concentration followed by a
sudden drop of concentration. This chemical phenomenon is
referred to as clock-type behavior, and the moment of concen-
tration drop is called clock time. Examples of this iodine clock
behavior are shown in Figure 2, where the differences in clock
time and peak height are due to different initial mixings and
pH values of the buffer solution.

The chemical reactions involved in the LLKE model are listed
in Table 1; the network of RedOx reactions is illustrated in
Figure 1. The edges of the network connect particular RedOx
pairs and are labeled with the corresponding reaction number.
Labels attached to nodes of the network (i.e., M2 and M9)
represent disproportion reactions.

The ODE system resulting from the LLKE model2 of the
chlorine dioxide/chlorite-iodide reaction involves the concen-
trations TI- ) [I-] + [I3

-], TI2
) [I2] + [I3

-], THOI ) [HOI] +
[H2OI+], [HIO2], [ClO2], TClO2

- ) [ClO2
-] + [HClO2], [HOCl],

[Cl2], and [Cl-]. The fast equilibrium assumption for reactions

Figure 1. Network of RedOx reactions in the LLKE model.

TABLE 1: Mechanism of the Chlorine Dioxide/
Chlorite-Iodide Reaction According to the LLKE Model2

M1 ClO2 + I- f ClO2
- + 1/2I2

M2 I2 + H2O h HOI + I- + H+

M3 HClO2 + I- + H+ f HOI + HOCl
M4 HClO2 + HOI f HIO2 + HOCl
M5 HClO2 + HIO2 f IO3

- + HOCl + H+

M6 HOCl + I- f HOI + Cl-

M7 HOCl + HIO2 f IO3
- + Cl- + 2H+

M8 HIO2 + I- + H+ h 2HOI
M9 2HIO2 f IO3

- + HOI + H+

M10 HIO2 + H2OI+ f IO3
- + I- + 3H+

M11 HOCl + Cl- + H+ h Cl2 + H2O
M12 Cl2 + I2 + 2H2O f 2HOI + 2Cl- + 2H+

M13 Cl2 + HOI + H2O f HIO2 + 2Cl- + 2H+

M14 HClO2 h ClO2
- + H+

M15 H2OI+ h HOI + H+

M16 I2 + I- h I3
-

2776 J. Phys. Chem. A, Vol. 113, No. 12, 2009 Kügler et al.



M14, M15, and M16 allows to reduce the dimension of the
original reaction system. More specifically, one can introduce
the total concentrations T to eliminate the corresponding
individual concentrations. Of course, the rate equations that
involve the individual concentrations [I-], [I2], [H2OI+], [HOI],
and [HClO2] have to be expressed by the total concentrations
TI-, TI2

, THOI, and TClO2
-, see below.

Introducing the variables q ∈ [R0
+]20, c ∈ [R0

+]9, and u ∈ R+

(as listed in Table 2), the reaction mechanism of the LLKE
model2 (as listed in Table 1) involves the following reaction
rates Vi

V1 ) q1 · c5 · [I-]

V2a ) q2 · q3 ·
[I2]

u
- q3 · [HOI] · [I-]

V2b )
q2

q15
· q4 · [I2] - q4 · [H2OI+] · [I-]

V3 ) q5 · [HClO2] · [I-]

V4 ) q6 · [HClO2] · [HOI]

V5 ) q7 · [HClO2] · c4

V6 ) q8 · c7 · [I-]

V7 ) q9 · c7 · c4

V8 ) q10 · q11 · c4 · [I-] · u - q11 · [HOI]2

V9 ) q12 · c4
2

V10 ) q13 · c4 · [H2OI+]

V11 ) q17 · q18 · c7 · c9 · u - q18 · c8

V12 ) q19 · c8 · [I2]

V13 ) q20 · c8 · [HOI] (4)

with

[I-]) c1 -
1
2
· (q16 + c1 + c2)-

�1
4
· (q16 + c1 + c2)

2 - c1 · c2

[I2]) c2 -
1
2
· (q16 + c1 + c2)-

�1
4
· (q16 + c1 + c2)

2 - c1 · c2

[H2OI+]) c3 ·
u

q15 + u

[HOI]) c3 ·
q15

q15 + u

[HClO2]) c6 ·
u

q14 + u
(5)

In particular, the reaction rates of the LLKE model2 involve
20 parameters qi, and their values and dimensions are shown
for reference in Table 3. In case of closed reactor conditions,
the change of the concentrations with respect to time t is
described by the nonlinear system of ordinary differential
equations

ċ1 ) -V1 +V2a +V2b -V3 -V6 -V8 +V10

ċ2 )
1
2
V1 -V2a -V2b -V12

ċ3 )V2a +V2b +V3 -V4 +V6 + 2V8 +V9 -V10 + 2V12 -V13

ċ4 )V4 -V5 -V7 -V8 - 2V9 -V10 +V13

ċ5 ) -V1

ċ6 )V1 -V3 -V4 -V5

ċ7 )V3 +V4 +V5 -V6 -V7 -V11

ċ8 )V11 -V12 -V13

ċ9 )V6 +V7 -V11 + 2V12 + 2V13 (6)

to be complemented with initial values for the concentrations.
In the following, this ODE system is compactly written as

ċ(t)) f(c(t), q, u)

c(0)) c0 (7)

with the vector c0 ∈ R0
+9 of initial concentrations. Therein, the

continuous function

f : R0
+9 × R0

+20 × R
+fR

9

represents the right-hand sides of eq 6. For example,

f8(c, q, u)) q17 · q18 · c7 · c9 · u- q18 · c8

- q19 · c8 · (c2 -
1
2
· (q16 + c1 + c2)

-�1
4
· (q16 + c1 + c2)

2 - c1 · c2)
- q20 · c8 · c3 ·

q15

q15 + u

With the concentrations ci measured in M () mol/L), the
dimensions of of the model parameters in eq 7 are non uniform
(see Table 3 for details). Since in addition the values of c and
q may vary within wide ranges, it is advisable to make the model
dimensionless and normalize all variables before doing any
computations. To this end, all variables are scaled with typical
values (e.g., c2 ) c2

typicalc′2, q13 ) q13
typicalq′13) and eq 7 is

transformed into a problem for and depending on dimensionless
(primed) variables. However, for the sake of simplicity, we stay
with the notation of eq 7 and consider it to be dimensionless
whenever the focus of our discussion is on computational issues.

Experimental Setup and Data

In this section, we describe the iodine concentration data used
to indirectly infer the parameters of the LLKE model. To this
end, we considered different initial mixings of chlorite and
iodide in solutions of various buffered pH values. The experi-
ments were performed using only one buffer substance to limit
the influence of different associations with it.15 To provide a
feature rich data set, we only selected those kinetic data curves
showing clock reaction behavior.

Materials and Spectrometry. All chemicals were obtained
commercially, were of highest purity available, and were used
without further purification. For the preparation of the experi-
mental solutions purity for potassium iodide was assumed to
be 100% and that of sodium chlorite 80% according to the
specifications of the producer. Solutions were prepared fresh
and used for two days at the most. Sodium chlorite solutions
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were prepared in 1 mM sodium hydroxide solution for stabiliza-
tion. Potassium iodide was prepared in water. HSO4

- was used
as the buffer substance with an acidity constant of 1.96. Buffer
and NaClO4 solutions were prepared separately. NaClO4 served
to adjust the ionic strength to 0.3 M.

Precaution was taken to minimize the influence of incomplete
mixing.2 The solutions for the experiments were added in the
following order: buffer solution, NaClO4 solution, KI solution,
NaClO2 solution. Furthermore, the reactive compounds were
prepared in such concentrations that the last mixing step
involved equal volumes. That way, desired initial concentration
values of chlorite and iodide could be achieved while preventing
reactions caused by local excess concentrations.

The desktop absorption spectrometer Hitachi U-3300 was
used to obtain absorbance values. The total iodine concentration
was followed at the isosbestic point of iodine and triiodide at
460 nm. The absorbance coefficient was chosen16 as 770 mol-1

cm2. In terms of the notation introduced in Table 2, the iodine
absorbance is represented as

770 · c2 (8)

Experimental Data. We performed Ne ) 31 experiments
with variations in the initial concentrations of I- and ClO2

-, the
H+ concentration of the buffer solution, and the time interval

[0, T] of the observation. Labeling each experiment by the index
j, we denote the absorbance data collected by

zj, j) 1,..., Ne

while the proper model for the j-th experiment becomes

ċ(t)) f(c, q, uj) on (0, Tj]

c(0)) c0
j (9)

with initial concentration vector

c0
j ) (c0,1

j , 0, 0, 0, 0, c0,6
j , 0, 0, 0)T (10)

compared with Table 2.
The chosen values of the experimental setup parameters

cj0,1
j , cj0,6

j , ujj, j) 1,..., Ne (11)

are summarized in Table 5. For the initial concentrations, the
error tolerances are (5% (relative); for the pH values, linked
to [H+] via pH )-log10([H+]), we have (0.1 (absolute). Hence,
the actual values of c0,1

j , c0,6
j , and uj are supposed to satisfy

c0,1
j ∈ [cj0,1

j -0.05cj0,1
j , cj0,1

j + 0.05cj0,1
j ]

c0,6
j ∈ [cj0,6

j - 0.05cj0,6
j , cj0,6

j + 0.05cj0,6
j ]

uj ∈ [10-ujj-0.1, 10-ujj+0.1] (12)

With respect to the discussion of the inverse problem, we
define the set

C) {(c0,1
1 , c0,6

1 , u1,..., c0,1
Ne c0,6

Ne , uNe)|(12) is satisfied} ⊂ R
3Ne

(13)

of possible setups.
Figure 2 shows the absorption data z4, z17, z29 corresponding

to the experimental setups (eq 11) for j ) 4, 17, 29 and
observation times T4 ) 1931, T17 ) 2000, T29 ) 1209 (in

Figure 2. Observation of clock reaction under different conditions.

TABLE 2: Mapping of Model Parameters and
Concentrations

q1 ) k1 q11 ) k8r c1 ) TI-

q2 ) K2a q12 ) k9 c2 ) TI2

q3 ) k2ar q13 ) k10 c3 ) THOI

q4 ) k2br q14 ) K14 c4 ) [HIO2]
q5 ) k3 q15 ) K15 c5 ) [ClO2]
q6 ) k4 q16 ) K16 c6 ) TClO2

-

q7 ) k5 q17 ) K11 c7 ) [HOCl]
q8 ) k6 q18 ) k11r c8 ) [Cl2]
q9 ) k7 q19 ) k12 c9 ) [Cl-]
q10 ) K8 q20 ) k13 u ) [H+]
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seconds). Though the signal zj is only recorded at discrete time
steps between 0 and Tj, we will consider the data as continuous
functions

zj ∈ C([0, Tj]), j) 1,..., Ne (14)

due to the high sampling rate. However, the following discussion
could easily be repeated in case of time discrete data zj.

Inverse Problem

Given a sequence of experimental data, the inverse problem
of our interest is to identify the unknown model parameters for
the underlying reaction mechanism. As outlined in our introduc-
tion, parameter identification is typically ill-posed and regular-
ization methods have to be used to avoid misleading results
due to instability and nonuniqueness of the solution. In this
article, we suggest variational regularization using sparsity
enforcing penalization and illustrate this approach by means of
the chlorite-iodide reaction. The available experimental data
have already been introduced in the previous section. In the
following, we specifiy the simulation term in eq 3 and the
measure for the misfit between data and simulation, followed
by a discussion of the penalty term.

Simulation Operator and Data Mismatch. A numerical
simulation of the LLKE model (eq 7) requires the assignment
of values to all n ) 20 components of the parameter vector q.
In addition, values for the initial concentrations c0,1, c0,6, the
H+ concentration u, and the final integration time T have to be
provided. In the following, we refer to the mapping that takes
q, c0,1, c0,6, u, T onto the solution c ∈ C([0, T], R0

+9) of the ODE
system (eq 7) as solution operator:

S : (q, c0,1, c0,6, u, T)f c (15)

C([0, T], R0
+9) denotes the space of all continuous functions

f:[0, T] f R0
+9; especially, f(t) ∈ R0

+9 for all t ∈ [0, T]. Note
that S is nonlinear in its arguments and only implicitly defined
via eq 7.

Having evaluated S, the iodine absorbance (eq 8) can be
simulated by extraction of the second component of c and
multiplication by the absorption constant 770. Defining the linear
absorbance mapping

A : cf 770 · c2

we finally can introduce the simulation operator

F)A o S : (q, c0,1, c0,6, u, T)f 770 · c2 (16)

as concatenation of S and A.
Given an estimate q for the unknown model parameters, the

simulation of the data zj of the j-th experiment is described by
F(q, c0,1

j , c0,6
j , uj, Tj) or equivalently by F(xj, Tj) using the notation

xj ) (q, c0,1
j , c0,6

j , uj) ∈ R
n+3 (17)

While the final observation time Tj can be considered as
precisely known, the values c0,1

j , c0,6
j , and uj must be allowed to

lie within a tolerance neighborhood of the measured values (eq
12). To measure the deviation between the data zj and the
simulation F(xj, Tj) of the j-th experiment, we use the square of
the norm | · |j on L2([0, Tj])

|zj -F(xj, Tj)|j
2 )∫0

Tj

(zj(t)- 770 · c2
j (t))2 dt (18)

The space L2([0, T]) contains all functions f:[0, T] f R with
∫0

Tf(t)2 dt < ∞; all continuous functions in C([0, T]) belong to
L2([0, T]). The misfit (eq 18) of the j-th experiment can be
influenced by altering the n + 3 variables xj ) (q, c0,1

j , c0,6
j , uj).

To measure the total misfit over all Ne experiments, we use the
weighted sum

∑
j)1

Ne

ωj∫0

Tj

(zj(t)- 770 · c2
j (t))2 dt (19)

with scalar weights

ωj )
1

|zj|j
2

(20)

Now, the total misfit (eq 19) can be influenced by alterations
in the N ) n + 3Ne variables

x) (q, c0,1
1 , c0,6

1 , u1, ..., c0,1
Ne , c0,6

Ne , uNe) ∈ R
N (21)

Our main interest is to identify the model parameters q belonging
to a set of admissible parameters Q ⊂ R20 (Table 3). Still, we
also have to take the uncertainties of the experimental setup
parameters (eq 11) into account. Hence, if the total search space
is defined as X ) Q × C (eq 13), the unregularized parameter
identification problem is given by

J0(x))∑
j)1

Ne

ωj | zj -F(xj, Tj)|j
2f min

x∈ X⊂ RN
(22)

Sparsity Enforcing Penalty Term. As outlined in the
Introduction, simply minimizing the pure least-squares func-
tional (eq 19) is not advisable because of the ill-posedness of
parameter identification. Instead, regularization techniques
should be used to allow the computation of stable approximate
solutions. The most popular approach for nonlinear problems
is variational regularization (eq 3) where stability is enforced
by expansion of the least-squares objective functional with an
additive penalty term. Usually, the full argument, in our case
x, is penalized. However, with narrow box constraints available
for the experimental setup parameters and the equilibrium
constants (eq 12 and Table 4), we only consider the penalization
of the rate constants and to this end introduce the index set

IR ) {1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 18, 19, 20} (23)

It contains those indices i ∈{1,..., 20} for which qi represents
a reaction rate (lower case k) but no equilibrium constant (upper
case K) (compare with Table 2). A common choice for the
penalty term in

JR(x)) J0(x)+R penalty (q)f min
x∈ X⊂ RN

(24)

is the square of the Euclidean norm, which in our case is written
as

penalty (q))∑
i∈ IR

qj
2 (25)

That way, eq 24 would amount to Tikhonov regularization.7

However, our goal is to enforce sparse solutions, that is, we
look for model parameters such that

qi ) 0 (26)

holds for as many indices i ∈ IR as possible while still allowing
to explain the experimental data. The idea is to eliminate
unidentifiable parameters while recovering the relevant ones in
a stable manner. Note that any rate constant equal to zero leads
to an elimination of the corresponding reaction given in eq 4.
Hence, instead of a model containing all possible reaction
pathways we strive for a reduced network still compatible with
the experimental observations.
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A first choice for a penalty term enforcing sparse solutions
is

|q|0 : ) number of nonzero elements qi with i ∈ IR (27)

Though eq 27 does not satisfy the properties of a norm, this
approach is called l0-norm penalization. Since | · |0 is not even
a continuous function, the computational costs for the minimiza-
tion of objective functionals with l0 penalty terms are high, in
particular because of the use of combinatorial techniques. Hence,
eq 27 is usually replaced by the p-th power of the lp-norm

|q|p : ) (∑i∈ IR

|qi|
p)1/p

with some p ∈ (0, 2] (the norm properties actually are only
satisfied for 1 e p e 2) such that the penalty term becomes

penalty(q)) | q|p
p (28)

For p ) 2, eq 28 coincides with eq 25, but then nonzero
parameter values are only weakly penalized in the neighborhood
of the origin. The smaller one chooses p the closer is the
approximation of eq 27 by eq 28 and the stronger is the
enforcement of sparsity. The effect of p is illustrated in Figure
3 for the one- and two-dimensional case. Note that (independent
of the dimension of the parameter vector) convexity of the
penalty functional is only given for pg 1. However, with respect
to the numerical realization this does not pose additional
difficulties since already the nonlinear least-squares functional
J0 typically is nonconvex.

In addition to the classical theory for Tikhonov regularization7

with p ) 2, a continuously increasing number of results on
regularization properties for the case p ∈ [1, 2] can be found in
the literature (see the references given in the Introduction).
Recently, it has been shown17,18 that also p < 1 renders a
regularization method. Hence, also for p < 1, the minimizers
of

JR(x)) J0(x)+ R | q|p
pf min

x∈ X⊂ RN
(29)

depend continuously on the data guaranteeing robustness of the
approach despite the presence of data noise.

There is another motivation for the use of sparsity promoting
penalization. Assume that model parameters q̃ are given from
some trusted source (e.g., the values of the LLKE model2 as
listed in Table 3). However, because of the general imperfectness
of mathematical models as images of real processes, it might
still happen that experiments independently conducted cannot
or only unsatisfactorily can be explained on the basis of q̃. Then,
one might wish to only alter as few components of q̃ as possible
while fitting the data. This can be achieved by enforcing sparsity
of the difference between q̃ and that sought for solution. If we
keep our focus on the index set IR, the appropriate penalty term
for enhancement of J0 then becomes

|q-q̃ |p
p (30)

In the next section, we present our results obtained with both
eqs 28 and 30, and the numerical realization of the approach
(eq 29) is explained in the Appendix. We have run several tests
with different choices of p and observed that p < 1 enforced
sparser solutions than p ) 1. In fact, a result according to which
the l1-norm solution actually is the sparsest solution is only
available in the linear case and hence does not apply to the
nonlinear problem at hand.19

The approach outlined in the article is suitable whenever
internal noise due to random birth and death events of chemical
species can be ignored and a deterministic ODE model (eq 1)

Figure 3. Sparsity effect of the value of p in eq 28.

Figure 4. Simulation.

Figure 5. Result without regularization.

Figure 6. Result with sparsity enforcing regularization.
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is appropriate. Especially, the experimental system for the
chlorite-iodide reaction studied in this article contained about
1016 reaction molecules. However, given a small-scale chemical
reaction network where the effects of internal noise cannot be
neglected, eq 1 is inappropriate and needs to be replaced by
stochastic models. Similarly, parameter identification then needs
to be treated as a statistical inverse problem (e.g., using so-
called filtering techniques).8,20

Finally, we address the issue of experimental systems with
drift. In our experiments, drift was avoided by the continuous
calibration in the two-beam spectrophotometer. However, given
a system with drift the resulting error can be counteracted if
the drift can be reliably determined by accompanying measure-
ments that allow to correspondingly adapt the observation
operator A in eq 16.

Results

First, we ran a pure simulation of the Ne ) 31 experiments
using the reference parameter values q* for the LLKE model2

(Table 3) and the experimental conditions cj0,1
j , cj0,6

j , ujj listed in
Table 5. Hence, no optimization was performed but the
data zj were only compared to the simulated outputs
F(q*, cj0,1

j , cj0,6
j , ujj, Tj). The corresponding value of the least-square

objective J0 is

∑
j)1

31

ωj | zj -F(q*, cj0,1
j , cj0,6

j , ujj, Tj)|j
2 ) 0.4619 (31)

and the individual relative errors in the output

wj∫0

Tj

(zj(t)- c2
j(t))2 dt (32)

reach from 6.14% for j ) 31 to 20.19% for j ) 1 with a mean
of 11.64%. As will be shown below, the quality of the data fit
based on Tables 3 and 5 is rather unsatisfactory. Figure 4 shows
the experiment j ) 1 with largest output error and, for later
reference, the values of q* normalized to 1.

In a first attempt to improve the quality of the data fit, we
performed the minimization of J0 only within the parameter
search space X ) Q but kept the experimental conditions fixed
with the values given in Table 5. Though the reference value
in eq 31 could be slightly reduced that way, some large
individual misfits remained. On the other hand, freezing the
parameters to the values of Table 3 and minimizing J0 only
with respect to the setup variables c0,1

j , c0,6
j , uj within X ) C led

to acceptable fits of all data with objective value 0.0218.
However, at the solution obtained many of the lower and upper
bounds (eq 12) were active such that we rejected that approach
and finally focused on the search space X ) Q × C.

The first computations over the n + 3Ne ) 113-dimensional
search space X ) Q × C were concerned with the minimization
problem as stated in eq 22 (i.e., only J0 was minimized and
regularization was not used). Not surprisingly, the larger degree
of freedom allowed a much better fit of the data compared to
the approaches mentioned above without hitting the boundaries
of the search space. Figure 5 shows the experiment j ) 12 with
largest output error (and the identified model parameters). At
the solution x to eq 22, the relative output errors (eq 32) range
from 1.3 to 3.5% with an average value of 2.1%, and the
objective functional assumes the value

J0(x)) 0.0139 (33)

significantly below that given in eq 31. However, the model
parameters identified (part of the solution x according to eq 21)
strongly deviate from the literature values q* (compare Figures

5a and 4a). Repeated independent minimizations of the unregu-
larized objective (eq 22) led to solutions q with similar data
fitting capabilities but large differences to q* and also among
themselves. These numerical examples underline the need for
regularizing the parameter identification problem.

To obtain more stable results, we then turned to the
regularization approach (eq 29). For the actual minimization,
we chose R ) 0.1 as well as the sparsity promoting penalty
term (eq 28) with p ) 0.1 and took advantage of a hierarchical
strategy (see the Appendix). The corresponding result is
illustrated in Figure 6. The relative output errors (eq 32) ranged
from 1.4 to 4.1% with an average value 2.4% and J0 value
0.0189, such that the quality of the data fit was only slightly
worse compared to that of eq 33. However, because of the
sparsity constraint the data now could be explained by a
parameter vector q ∈ R20 with qi ) 0 for i ∈ I0 with

I0 ) {1, 4, 9, 13, 17, 18, 19, 20} (34)

representing model parameters of no or low influence for
reproducing the data. The nonzero values of q are much closer
to the corresponding values of q* than without regularization
(Figure 5a). Independent reruns of the computations led to
identical sparsity patterns and, as opposed to the unregularized
situation, to significantly less fluctuation of the nonzero
parameter values. This numerically demonstrates the stabilizing
benefits of the penalty term and its capability to eliminate
unidentifiable parameters. Therein, the sparsity structure implies
a simplified reaction network that does not violate any chemical
intuition but has a sound interpretation (see the Conclusions
for details).

Finally, to examine the trustability of the reduced network
structure suggested by eq 34, we set all qi with i ∈ I0 equal to
zero and tested if our data could be explained by the remaining
nonzeroparametersqiwithi∈IX){2, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16}
in the vicinity of the corresponding reference values qi*, i ∈ IX,
of Table 3. Hence, we considered the minimization problem

JR(x)) J0(x)+R | q- q * |p
pfmin

x∈ X

with R ) 0.1, p ) 0.1, and the penalty term only active over
the index set IX. The result, with relative output errors (eq 32)
ranging from 1.6 to 5.1% with average value 2.6% and J0 value
0.0245, is shown in Figure 7. As expected, a sparsity penaliza-
tion of the difference between q and q* forces the (nonzero)
parameter values to stay close to the reference values. For the
index set IX, significant differences between q and q* only exist
at the indices i ) 2,10,14,15 while still a satisfactory explanation
of the experimental observations is possible.

Conclusions

In this article, we addressed the ill-posedness of parameter
identification in nonlinear ODE systems describing chemical

Figure 7. Result with sparsity penalization of q - q* using the pattern
I0.
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reaction networks and the need for regularization of the problem
to computationally obtain stable solutions. For the common case
of multiple solutions due to limited information content of
available data, we suggested the use of variational regularization
with sparsity enforcing penalty term. Among several solutions
able to explain the experimental observations, a sparse solution
represents a mathematical model that concentrates on the core
reactions involved in the process. Parameters unidentifiable from
the available data are eliminated, and reaction pathways of low
or no impact on the model output are erased. This is also in
accordance with Ockham’s razor striving for simple models
facilitating their manageability in the context of model-based
applications beyond the scope of time-course simulations such
as numerical bifurcation analysis, reaction control, or experi-
mental design.

The sparsity pattern (eq 34) obtained for the LLKE model
can be interpreted as follows (see also eq 4):

q1 ) 0 w W1 ) 0. Reaction M1 represents the one-way
conversion of chlorine dioxide to chlorite. Given an initial
chlorine dioxide concentration equal to zero, that is, c5(0) ) 0
for the ODE model (eq 6), it is obvious that M1 actually does
not take place, that is, c5(t) ) 0. The purpose of still including
the reaction in the ODE model was to provide an indisputable
test case for our sparsity approach. In all our computations with
sparsity enforcing penalization the irrelevance of M1 was
detected.

q4 ) 0 w W2b ) 0 and q13 ) 0 w W10 ) 0. Reactions M2b
and M10 describe the generation and consumption of H2OI+,
where M2b is an alternative to M2a. Our result q4 ) 0 indicates
that the experimental data under consideration can still be
explained if M2b is excluded from the reaction network and
only M2a is used. It can be argued that the range of pH values
was not wide enough to confirm the existence of M2b.

q9 ) 0w W7 ) 0. The rate constants in the LLKE model2 are
directly inferred from experiments. Our investigations show
agreement for most of the needed core reactions. However,
reaction M7 is found to be negligible by our sparsity approach.
Given our set of experiments within a slightly smaller range of
pH values compared to the LLKE model,2 reaction M7 does
not necessarily belong to the core reactions. In contrast to the
chlorine-related differences (see below), this has no support by
other recent publications.

q18 ) 0 w W11 ) 0. Reaction M11 represents the generation
of chlorine. In the LLKE model,2 M11 is important only at [H+]
> 0.01 mol/L and [HClO2] > 10-3 mol/L. While some
experiments were conducted with [H+] > 0.01 mol/L, [HClO2]
never exceeded its critical value because [HClO2] < [ClO2]0 <
10-3 mol/L (Table 5). The irrelevance of M11 under these
conditions was detected by our sparsity approach, which led to
q18 ) 0.

q17 ) 0. The parameter q17 only occurs in the reaction rate
V11 associated with reaction M11. Since q18 is zero, the value
of q17 becomes irrelevant. Hence, the corresponding equilibrium
constant cannot be identified on the basis of the data set
considered and is set to zero.

q19 ) 0 w W12 ) 0 and q20 ) 0 w W13 ) 0. Reactions M12
and M13 consume chlorine and hence depend on the
conversion rate V11 associated with M11. Since M11 was
found to be unimportant, there is not sufficient educt for the
reactions M12 and M13 such that their rates V12 and V13

become negligible.
Future work is devoted to investigate if the reduced model

based on eq 34 is capable of reproducing the rich repertoire of

dynamical features of the chlorine dioxide/chlorite-iodide
reaction such as oscillations and bistability.2,21
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Appendix

Variational regularization techniques typically lead to minimiza-
tion problems that may also be approached by gradient-based
routines. The adjoint method for deriving an exact formula of
the gradient, also with respect to varying experimental condi-
tions, is exemplified by means of the LLKE model for the
chlorite-iodide reaction. From the viewpoint of numerical
realization, this approach avoids error-prone finite differences
and unnecessary computational burden.

Evaluation of the Objective Functional

Clearly, any optimization technique for solving the minimization
problem (eq 29) requires the evaluation of the objective
functional J at the current iterate x. With a penalty term as in
eq 28, the main effort in the evaluation of eq 29 is the
computation of J0(x). Given the definition (eq 16) of the forward
operator, the first step is to solve the ODE system (eq 9) Ne

times with q and the experimental conditions sj ) (c0,1
j , c0,6

j , uj),
j ) 1,..., Ne, part of the current argument x according to eq 21.
Second, the Ne time integrals of eq 19 have to be computed for
which we used the MATLAB code trapz.

Gradient Calculation of the Objective

In our examples, the minimization problem (eq 29) was solved
by a combined use of global and local optimization techniques.
Global searches of the admissible set X were performed by the
MATLAB routines ga, patternsearch (implementations of
genetic and pattern search algorithms) to deliver suitable
candidates for subsequent local searches. For the latter, the
MATLAB code fmincon, a realization of the sequential quadratic
programming method, was utilized. While ga and patternsearch
only involve the evaluation of the objective J (as outlined above)
for different arguments x ∈ X, fmincon in addition requires the
calculation of the gradient of J.

Relaxation of the Penalty Term

With respect to gradient-based optimization, the nondifferen-
tiability of eq 28 at 0 for 0 < p e 1 (see also Figure 3) can be
overcome by using a small relaxation parameter ε > 0 (chosen
as 10-4 in our computations) and choosing the penalty

|q|p,ε
p : )∑

i∈ IR

(|qi|
2 + ε)p/2 (35)

instead of eq 28. Then, |q|p,ε
p is also differentiable at 0 (with

zero slope, also see the hierarchical optimization approach

TABLE 3: Parameters of the LLKE Model,2 Also Denoted
by q* ∈ R20

q1 ) k1 ) 6000 M-1 s-1 q11 ) k8r ) 22 M-1 s-1

q2 ) K2a ) 5.4 × 10-13 M2 q12 ) k9 ) 25 M-1 s-1

q3 ) k2ar ) 3.67 × 109 M-1 s-1 q13 ) k10 ) 110 M-1 s-1

q4 ) k2br ) 3.48 × 109 M-1 s-1 q14 ) K14 ) 0.02 M
q5 ) k3 ) 7.8 M-1 s-1 q15 ) K15 ) 0.034 M
q6 ) k4 ) 6.9 × 107 M-1 s-1 q16 ) K16 ) 0.00135 M
q7 ) k5 ) 106 M-1 s-1 q17 ) K11 ) 1000 M-2

q8 ) k6 ) 4.3 × 108 M-1 s-1 q18 ) k11r ) 22 s-1

q9 ) k7 ) 1500 M-1 s-1 q19 ) k12 ) 1.5 × 105 M-1 s-1

q10 ) K8 ) 4.55 × 107 M-1 q20 ) k13 ) 106 M-1 s-1
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below) and its derivative with respect to qi, i ∈ IR, is given
by

p
qi

(|qi|
2 + ε)1-p/2

(36)

Using eq 35 as penalty term yields the minimization problem

JR
ε (x)) J0(x)+R | q|p,ε

p fmin
x∈ X

(37)

Finite Difference Approximation

Turning toward J0, its gradient in principle could be computed
by the finite difference method as, for example, used in the ZITA
package.4 With ei denoting the i-th unit vector in RN and some
ε <<1,

∂J0(x)

∂xi
≈

J0(x+ εei)- J0(x)

ε
, i) 1, ..., N (38)

serves as an approximation of the i-th component of ∇ J0(x) ∈
RN. Numerical differentiation, as a prime example for an ill-
posed problem, has to be handled with much care since
otherwise errors in the evaluation of J0 (e.g., due to errors in
the data zj) can lead to faulty calculations of the derivatives.
Furthermore, the finite difference approach (eq 38) requires
solving Ne + (n + 3) ·Ne nonlinear ODE systems (eq 9), an
effort necessary in each iteration step of the local optimization
procedure fmincon.

The computational disadvantages of finite differences can be
avoided if the gradient of J0 is provided by means of the adjoint
technique. A first step toward its introduction is the derivation
of a formula for the gradient of J0 based on a set of linearizations
of the nonlinear model (eq 9).

Exact Gradient Formula Using a Set of Linearized
Equations

The gradient of J0 at argument x is denoted by ∇ J0(x) ∈ RN.
For any h ∈ RN it satisfies

lim
λf0

|J0(x+ λh)- J0(x)- λ(∇ J0, h)N|

λ
) 0 (39)

where ( · , · )N denotes the scalar product in RN. Actually,
(∇ J0(x), h)N is the directional derivative of J0 at x in direction
h, often also denoted

J0
′(x)h (40)

The N components of the vector ∇ J0(x) are given by
(∇ J0(x), ei)N, i ) 1,..., N, or eq 40 with directions h ) ei, i )
1,..., N. Hence, eq 40 is the key to any routine for calculating
the gradient of J0.

For the following discussion, it is advantageous to consider
a general direction h ∈ RN (where h ) ei then is a special case)
and to split the variables of h similar to eq 21 into

TABLE 4: Lower and Upper Bounds q_i and qji Used for Confining the Parameter Search Space Q; Dimensions as in Table 3a

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

0 5.4 × 10-14 0 0 0 0 0 0 0 2.3 × 106

q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

0 0 0 0.016 0.01 0.0013 100 0 0 0

qj1 qj2 qj3 qj4 qj5 qj6 qj7 qj8 qj9 qj10

12000 5.4 × 10 -12 7.34 × 109 6.96 × 109 15.6 1.38 × 108 2 × 106 8.6 × 108 3000 4.55 × 108

qj11 qj12 qj13 qj14 qj15 qj16 qj17 qj18 qj19 qj20

44 50 220 0.024 0.34 0.014 1 × 104 44 3 × 105 2 × 106

a The selection of bounds for the optimizations were based on the published values available. Depending on the assessed accuracy of
the measurements for the various rate and equilibrium constants, bounds for the optimizations were chosen appropriately. The
measurements of equilibrium constants are generally easier to measure so its bounds were chosen as 1 magnitude higher and lower,
respectively. For the kinetic constants the bounds were chosen asymmetrically. The upper bounds are normally easier to estimate so they
were chosen as double of published values. For the lower bound no real limit can be assumed so the physical boundary of zero was
reasonable.

TABLE 5: Initial Reactant and H+ Concentrations (in M) Used in the Ne ) 31 Experiments

j cj0,1
j cj0,6

j ujj j cj0,1
j cj0,6

j ujj

1 9.9638 × 10-5 1.9991 × 10-4 0.0050 17 4.4903 × 10-4 8.9991 × 10-4 0.0012
2 9.9638 × 10-5 1.9991 × 10-4 0.0079 18 5.9871 × 10-4 1.1998 × 10-3 0.0012
3 9.9638 × 10-5 1.9991 × 10-4 0.0126 19 1.4967 × 10-4 2.9997 × 10-4 0.0021
4 9.9638 × 10-5 1.9991 × 10-4 0.0200 20 4.4903 × 10-4 8.9991 × 10-4 0.0021
5 9.9638 × 10-5 1.9991 × 10-4 0.0316 21 5.9871 × 10-4 1.1998 × 10-3 0.0021
6 1.9927 × 10-4 3.9983 × 10-4 0.0032 22 1.4967 × 10-4 2.9997 × 10-4 0.0041
7 1.9927 × 10-4 3.9983 × 10-4 0.0050 23 4.4903 × 10-4 8.9991 × 10-4 0.0041
8 1.9927 × 10-4 3.9983 × 10-4 0.0079 24 5.9871 × 10-4 1.1998 × 10-3 0.0041
9 1.9927 × 10-4 3.9983 × 10-4 0.0126 25 4.4903 × 10-4 8.9991 × 10-4 0.0015
10 1.9927 × 10-4 3.9983 × 10-4 0.0200 26 5.9871 × 10-4 1.1998 × 10-3 0.0015
11 1.9927 × 10-4 3.9983 × 10-4 0.0316 27 1.4967 × 10-4 2.9997 × 10-4 0.0028
12 2.9891 × 10-4 7.9966 × 10-4 0.0050 28 4.4903 × 10-4 8.9991 × 10-4 0.0028
13 2.9891 × 10-4 7.9966 × 10-4 0.0079 29 5.9871 × 10-4 1.1998 × 10-3 0.0028
14 2.9891 × 10-4 7.9966 × 10-4 0.0126 30 1.4967 × 10-4 2.9997 × 10-4 0.0052
15 2.9891 × 10-4 7.9966 × 10-4 0.0200 31 5.9871 × 10-4 1.1998 × 10-3 0.0052
16 2.9891 × 10-4 7.9966 × 10-4 0.0316
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h) (s, d0,1
1 , d0,6

1 , V1, ..., d0,1
Ne , d0,6

Ne , VNe)

Therein, s ∈ Rn and d0,1
j , d0,6

j , Vj ∈ R denote possible additive
perturbations of q, c0,1

j , c0,6
j , and uj. Furthermore, for given h

we introduce the auxiliary vectors

hj ) (s, d0,1
j , d0,6

j , V j) ∈ R
n+3

for j ) 1,..., Ne similar to those in eq 17.
Because of the chain rule, the directional derivative (eq 40)

of eq 22 involves directional derivatives F′(xj, Tj)hj of the
forward operator (eq 16) at xj in directions hj. That is, we have

J0
′(x)h)-2∑

j)1

N

ωj(zj -F(xj, Tj), F′(xj, Tj)hj)j (41)

where ( · , · )j denotes the inner product in L2([0, Tj]). Since the
absorption operator A is linear, the derivative of F can easily
be built once that of the nonlinear solution operator S is
characterized. To this end, we consider two arguments xj and xj

+ λhj with some scalar λ. Then, similar to eq 39, the derivative
of S at xj in direction hj is defined as the linear operator L which
satisfies

lim
λf0

|S(xj + λhj, Tj)- S(xj, Tj)- λLhj|L2([0,Tj],R9)

λ
) 0

in the following denoted by L ) S′(xj, Tj). It can be shown that
S′(xj, Tj) maps hj onto the solution of a linearization of the ODE
system (eq 9), and more particular, we have

S ′ (xj,Tj) : hjfw(hj)j

where w(hj)j ∈ C([0, Tj], R9) denotes the solution of the linear
ODE system

ẇ(t)) fc(c
j, q, uj)w+ fq(c

j, q, uj)s+ fu(c
j, q, uj)Vj,

on (0, Tj] (42)

w(0)) (d0,1
j , 0, 0, 0, 0, d0,6

j , 0, 0, 0)T (43)

Therein,

fc(c, q, u)) ∂f
∂c

(c, q, u)

) ( ∂f1

∂c1
(c, q, u) ...

∂f1

∂c9
(c, q, u)

l ... l
∂f9

∂c1
(c, q, u) ...

∂f9

∂c9
(c, q, u) ) ∈ R

9×9 (44)

is the Jacobian matrix of f with respect to c, for instance, the
matrix entry at position (4, 6) is

fc(c, q, u)4,6 ) q6 ·
u

q14 + u
· c3 ·

q15

q15 + u
- q7 ·

u
q14 + u

· c4

Furthermore, fq(c, q, u) ∈ R9×n is the Jacobian matrix of f with
respect to q and fu(c, q, u) ∈ R9 is the derivative of f with respect
to u.

Using the definitions of the operators involved, we can write
eq 41 as

J0
′(x)h)-2∑

j)1

Ne

ωj∫0

Tj

(zj(t)- 770 · c2
j (t))

· 770 · w(hj)2
j(t) dt (45)

In principle, this formula could already be used for building
the gradient of J0 at x without the need for finite differences
by evaluation of eq 45 for all h ) ei, i ) 1,..., N. However,
this would require solving Ne nonlinear ODE systems (eq 9)
for cj, j ) 1,..., N, as well as (n + 3) ·Ne linear ODE systems
(eq 42) for the various w(hj)j. A significant reduction of these
computational costs can be achieved if, instead of using eq
45, the gradient of J0 is built by means of the adjoint
technique.

Efficient Gradient Calculation by Means of the Adjoint
Technique

As an alternative to eq 45, a formula for the derivative (eq 40)
can be derived that involves solutions to so-called adjoint state
equations and, as a consequence, can be computed much
cheaper. We start by introducing the vector valued function
rj ∈ C([0, Tj], R9) defined as

r2
j (t)) 770 · (zj(t)- 770 · c2

j (t)) and rj
i(t) ≡ 0 for i* 2

(46)

Then, eq 45 is equivalent to

J0
′(x)h)-2∑

j)1

Ne

ωj∫0

Tj

〈rj(t), w(hj)j(t)〉 dt (47)

where 〈 · , · 〉 denotes the inner product in R9. The residual
function r is furthermore used in the linear ODE system

�
˙
(t)) - fc(c

j, q, uj)T�+ rj, on [0, Tj) (48)

�(Tj)) 0 (49)

referred to as the adjoint equation. Its solution, the adjoint state,
is denoted by �j ∈ C([0, Tj], R9).

Next, if we use in eq 47 the representation for rj induced by
eq 48, partially integrate with respect to time, consider eqs 43
and 49, and take advantage of eq 42, we obtain the alternative
formula

J0
′(x)h) - 2∑

j)1

Ne

ωj∫0

Tj

〈fc(c
j, q, uj)T�j + �

˙ j, w(hj)j〉 dt

)-2∑
j)1

Ne

ωj{∫0

Tj

〈�j, fc(c
j, q, uj)w(hj)j -w(ḣj)j〉dt

- { 〈�j(0), w(hj)j(0)〉}
)-2∑

j)1

Ne

ωj{∫0

Tj

〈�j, fq(c
j, q, uj)s+ fu(c

j, q, uj)Vj〉dt

+ { �1
j(0) · d0,1

j + �6
j(0) · d0,1

j }

(50)

for eq 40.
The advantage of eq 50 over eq 45 comes from the fact that,

as opposed to the solutions w(hj)j of eq 42, the solutions �j, j )
1,..., Ne, of eq 48 do not depend on the variables hj. Hence, the
adjoint solutions can be computed independently of the search
directions h or hj, respectively. Overall, the computation of the
gradient ∇ J(x0) according to eq 50 only requires to solve (in
addition to the Ne nonlinear systems for cj) Ne linear ODE
systems (eq 48) for �j, j ) 1,..., Ne, compared to (n + 3) ·Ne
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linear systems (eq 42) in case of the approach (eq 45). This
clearly demonstrates the benefits of the adjoint technique (which
of course again avoids finite differences).

Note that the adjoint problem (eq 48) has to be solved
backward in time because of the terminal condition (eq 49).
By means of a change of variables τ ) Tj - t and

�̂(τ)) �(Tj - τ), rˆj(τ)) rj(Tj - τ), cˆj(τ)) cj(Tj - τ)

eq 48 can be transformed to

�̂τ(τ)) fc(cˆj, q, uj)T�̂- rˆj, on (0, Tj]

�̂(0)) 0 (51)

i.e., a problem forward in time. Clearly, the original solution �j

needed in eq 50 is then obtained as �j(t) ) �̂j(Tj - t).
Summarizing, the gradient calculation of J0 at x as in eq 21

via the adjoint method involves the following steps:
1. Compute the solutions cj of eq 9 for all xj (see eq 17), j )

1,..., Ne. Typically, this task is already performed by a
preceding evaluation of J0(x).

2. Build the residuals rj as in eq 46 for j ) 1,..., Ne.
3. Solve the adjoint state equations (eq 51) for �̂j, j ) 1,...,

Ne.
4. For h ) ei, i ) 1,..., N, compute the inner products, time

integrals, and sums of eq 50 for J0(x)′ei to build ∇ J0(x) ∈
RN.

The gradient of JRε in eq 37 is then easily build using eqs 50
and 36.

Hierarchical Optimization Approach

Parameter components qi, i ∈ IR, to which the output F(xj, Tj)
is not or only weakly sensitive, are detected by our sparsity
enforcing approach. Still, they are possibly not exactly driven
to zero but only to some small positive values during the
optimization procedure (e.g., due to the zero slope of the
relaxed penalty term (eq 35) at zero). Nevertheless, small
values are forced by eq 35 to become very small such that
strictly sparse solutions can be obtained by the following
hierarchical strategy for solving the parameter identification
problem:

1. Solve the optimization problem (eq 37) with rate index
set IR as in eq 23.

2. Set components qi, i ∈ IR, below the threshold ε equal to
zero, i.e.,

qie ε with i ∈ IRf qi ≡ 0

3. Eliminate indices i ∈ IR with qi ) 0 from IR such that the
set IR is reduced.

4. Repeat steps 1-3 until sparse components can no longer
be found and IR can no longer be reduced.
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